Load-Varying LINPACK: A Benchmark for Evaluating Energy Efficiency in High-End Computing
نویسندگان
چکیده
For decades, performance has driven the high-end computing (HEC) community. However, as highlighted in recent exascale studies that chart a path from petascale to exascale computing, power consumption is fast becoming the major design constraint in HEC. Consequently, the HEC community needs to address this issue in future petascale and exascale computing systems. Current scientific benchmarks, such as LINPACK and SPEChpc, only evaluate HEC systems when running at full throttle, i.e., 100% workload, resulting in a focus on performance and ignoring the issues of power and energy consumption. In contrast, efforts like SPECpower evaluate the energy efficiency of a compute server at varying workloads. This is analogous to evaluating the energy efficiency (i.e., fuel efficiency) of an automobile at varying speeds (e.g., miles per gallon highway versus city). SPECpower, however, only evaluates the energy efficiency of a single compute server rather than a HEC system; furthermore, it is based on SPEC’s Java Business Benchmarks (SPECjbb) rather than a scientific benchmark. Given the absence of a load-varying scientific benchmark to evaluate the energy efficiency of HEC systems at different workloads, we propose the load-varying LINPACK (LV-LINPACK) benchmark. In this paper, we identify application parameters that affect performance and provide a methodology to vary the workload of LINPACK, thus enabling a more rigorous study of energy efficiency in supercomputers, or more generally, HEC.
منابع مشابه
Energy Aware Resource Management of Cloud Data Centers
Cloud Computing, the long-held dream of computing as a utility, has the potential to transform a large part of the IT industry, making software even more attractive as a service and shaping the way IT hardware is designed and purchased. Virtualization technology forms a key concept for new cloud computing architectures. The data centers are used to provide cloud services burdening a significant...
متن کاملHeterogeneous Systems for Energy Efficient Scientific Computing
This paper introduces a novel approach for exploring heterogeneous computing engines which include GPUs and FPGAs as accelerators. Our goal is to systematically automate finding solutions for such engines that maximize energy efficiency while meeting requirements in throughput and in resource constraints. The proposed approach, based on a linear programming model, enables optimization of system...
متن کاملGreen Energy-aware task scheduling using the DVFS technique in Cloud Computing
Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...
متن کاملEnergy Efficiency Evaluation and Benchmarking of Afrl's Condor High Performance Computer
Emerging supercomputers strive to achieve an ever increasing performance metric at the cost of excessive power consumption and heat production. This expensive trend has prompted an increased interest in green computing. Green computing emphasizes the importance of energy conservation, minimizing the negative impact on the environment while achieving maximum performance and minimizing operating ...
متن کاملLoad Balancing Approach Based on Limitations and Bottlenecks of Multi-core Architectures on a Beowulf Cluster Compute-Node
This paper studies the improvement of performance and execution time of a single compute-node in a Beowulf cluster. We want to implement a load balancing approach through the Linux scheduler which improves the performance and execution time of High Performance Linpack (HPL) benchmark. We compare the performance and execution time when spawning processes for two processing cores in a local proce...
متن کامل